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Abstract: Fractional calculus-based differential equations were found by previous studies to be
promising tools in simulating local-scale anomalous diffusion for pollutants transport in natural
geological media (geomedia), but efficient models are still needed for simulating anomalous transport
over a broad spectrum of scales. This study proposed a hierarchical framework of fractional advection-
dispersion equations (FADEs) for modeling pollutants moving in the river corridor at a full spectrum
of scales. Applications showed that the fixed-index FADE could model bed sediment and manganese
transport in streams at the geomorphologic unit scale, whereas the variable-index FADE well fitted
bedload snapshots at the reach scale with spatially varying indices. Further analyses revealed that
the selection of the FADEs depended on the scale, type of the geomedium (i.e., riverbed, aquifer, or
soil), and the type of available observation dataset (i.e., the tracer snapshot or breakthrough curve
(BTC)). When the pollutant BTC was used, a single-index FADE with scale-dependent parameters
could fit the data by upscaling anomalous transport without mapping the sub-grid, intermediate
multi-index anomalous diffusion. Pollutant transport in geomedia, therefore, may exhibit complex
anomalous scaling in space (and/or time), and the identification of the FADE’s index for the reach-
scale anomalous transport, which links the geomorphologic unit and watershed scales, is the core for
reliable applications of fractional calculus in hydrology.

Keywords: fractional calculus; anomalous diffusion; multi-scale model; pollutant transport

1. Introduction

Transport of materials in Earth systems can exhibit scale-dependent dynamics in
anomalous diffusion, since the functions affecting non-Fickian transport may vary, in-
teract, and/or compete in a wide range of spatiotemporal scales and result in complex
mobilization and/or retention of materials in natural geomedia (e.g., soil, slopes, rivers,
and aquifers) [1]. For example, pollutant transport in the hyporheic zone (which is the
interface between surface water and groundwater containing at least 10% surface water)
exhibits strong scaling behaviors varying from geomorphologic unit to watershed scales [2].
Although studies on stream transport (mass and chemical) in the last three decades have
made significant contributions toward better understanding of mechanisms and hydro-
biogeochemical implications of hyporheic flow and transport processes [3–5], there remains
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a lack of multi-scale mathematical models that can reliably quantify pollutants and sedi-
ment dynamics in streams across multiple scales. The same challenge persists for dissolved
contaminants transport in subsurface water (i.e., water in saturated porous or fractured
media), which has remained a research topic in subsurface stochastic hydrology for more
than four decades [6–9] and has motivated this study.

The fractional-order partial-differential equations (FPDEs) reviewed extensively by
Metzler and Klafter [10] provide a set of promising tools to quantify dynamics of pollutants
transported in streams and aquifers because of the following three reasons. First, the fol-
lowing fractional advection-dispersion equation (FADE) built upon fractional calculus was
found to be applicable in capturing non-Fickian dispersion in complex media, including
flow/transport in geomedia, which typically result in non-Fickian or anomalous behavior
due to the multi-scale intrinsic physical/chemical heterogeneity of the media [11]:

β∗
∂γ

∂ tγ
P(x, t) = −V

∂

∂x
P(x, t) + D

∂α

∂ xα
P(x, t), (1)

where P [ML−3] is the material density, the symbol ∂γ/∂tγ represents the Caputo time-
fractional derivative with order γ [dimensionless] (0 < γ ≤ 1), α [dimensionless] (1 < α ≤ 2)
is the index of the (positive) Riemann–Liouville space-fractional derivative, V [LT−1] is the
average flow velocity, D [LαT−1] is the effective dispersion coefficient, and β∗ = 1 [Tγ−1] is
used here for unit conversion (so that velocity V can have the commonly used dimension).
Here, the Riemann–Liouville space-fractional derivative is needed since the corresponding
FPDE on a bounded domain governs a well-defined stochastic process (while the bounded
value problem for the FPDE with the Caputo space-fractional derivative generates negative
solutions) [12,13]. Second, the space-nonlocal FADEs with a space-fractional derivative
can capture super-diffusion (which represents fast displacement with the plume variance
growing faster than linear in time) driven by hydrologic mechanisms including local-scale
river turbulence, large-scale flooding, and other preferential flow paths, even though
super-diffusion has been consistently ignored by current time-nonlocal transport models
in hydrology [14]. Notably, the FADE (1) uses the one-side space-fractional derivative
because the fast displacement for pollutant particles is usually one dimensional (from
upstream to downstream) in geomedia (meaning that the two-side FPDEs are not ap-
propriate for modeling typical hydrologic processes). Third, the time-nonlocal FADEs
with a time-fractional derivative can simulate sub-diffusion due to chemical/physical
sorption/desorption and/or retention of pollutants in geomedia [15].

Geomedia’s intrinsic physical/chemical heterogeneity can evolve across scales, and
materials (such as sediment, colloids, nutrients, and heavy metals) may move continuously
from lower to higher scales before becoming trapped or degrading. One of the main
challenges of FPDEs in Earth sciences, therefore, is how to develop and apply the FPDEs
to quantify anomalous transport in geomedia over a broad spectrum of scales, although
the FADEs with constant parameters (including both the dispersion coefficient and the
fractional derivative index) were found to be applicable in fitting anomalous transport
in geomedia at a fixed scale; see the extensive review in Zhang et al. [16,17]. The other
challenge is that, although fractional calculus has been introduced into hydrology and
Earth sciences communities for over two decades [18], the in-depth integration of hydro-
logic/hydrogeological mechanisms and fractional-derivative models is rather rare, which
significantly limits further applications of FPDEs in Earth sciences.

This study developed and demonstrated a technique to simulate anomalous transport
at various scales using the FADEs. The rest of this work is organized as follows. Section 2
proposes a hierarchical method using multi-level FADEs to capture scale-dependent trans-
port in the river corridor based on the physical and chemical heterogeneity of the system.
Section 3 checks the applicability of the proposed FADE framework by simulating bed sedi-
ment and the heavy metal moving in real-world streams at a wide range of scales. Section 4
discusses the model feasibility and the scale-dependent FADE index by conducting Monte
Carlo simulation of pollutant transport in a saturated fracture medium. Section 5 draws the
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conclusions. Hence, this study provides a complete picture for the theory and application
of FADEs when modeling anomalous transport in the complex river corridor.

2. Hierarchical Method Using Multi-Level Fractional-Derivative Models
2.1. Multi-Scale Modeling, Anomalous Transport, and Classical Models

Our development of multi-scale models follows knowledge gained since 1962, when
the concept of “multiscale” was first proposed by Tetnev in the discipline of Radio Engi-
neering and Electronic Physics in the USSR. First, to integrate partial-differential equations
at different scales, two basic approaches, the hierarchical method and the hybrid method,
have been used [19,20]. The hierarchical method starts from the smallest scale, yielding
results used as an input to the next scale [21], while the hybrid method allows concurrent
simulations at different levels [22]. We selected the hierarchical method since it is com-
putationally much more efficient than the hybrid method [23]. In addition, it may not
be necessary to build detailed, smaller-scale processes in a larger-scale model using the
FPDE, since the FPDE, theoretically and mathematically, represents the scaling limit of
the sub-grid process and therefore is an “upscaling” model [24]. Second, the transfer of
essential information between scales, which is usually from a lower to a higher level, or the
so called “upscaling”, can be performed by taking average, integral, aggregation, or best
fit for parameters [25]. In this study, the FPDE is developed for each scale, and the main
information at a lower scale (which contains statistics of the essential microscopic features)
can then be conveyed to the higher scale. Third, subgrid-scale variability in subsurface
properties and hydro-biogeochemical processes has a significant impact on the grid-scale
transport dynamics and should be represented within macroscopic models [26]. This can
be done by the FPDE, which can efficiently capture non-Fickian dispersion and upscale
transport kinetics without the need to map subgrid heterogeneity.

We classify the movement of pollutants in streams into three distinct spatial scales
(Table 1), following the arguments in Boano et al. [2]: (a) the geomorphologic unit scale, con-
sisting of specific bedforms such as ripples/dunes, and alternate/meander bars (in length
of 10−1~100 m); (b) the reach scale (101~103 m), where most field tests were conducted; and
(c) the watershed scale (>103 m), which is critical for aquatic ecosystems.

Table 1. Properties and standard models for pollutants moving at three representative scales in streams.

Properties Geomorphologic Unit Scale Reach Scale Watershed Scale

Hydrologic/biogeochemical
factors on pollutant dynamics

Geomorphology; Turbulence;
Local-scale mass exchange
between channel and riverbed
due to hydrologic &
biogeochemical uptake

Variation in hydrologic
dynamics & system
properties; Broad
biogeochemical functions

Climate change (including
extreme rainfall events);
Sub-watershed properties;
Long-term land use/land
cover change

Anomalous
transport properties

Super-diffusion due to
hydro-function (turbulence);
Sub-diffusion due to physi-
cal/biogeochemical functions

Non-stationary evolution of
residence times and/or
super-diffusion; Heavy-tailed
residence times and strong
uptake/retention

Mixing of anomalous
diffusion from sub-basins;
Long-term competition
between fast jumps (due to
flooding) and retention

Standard models for pollutant
transport at each scale

Physically based models, such
as the Advective Pumping
Model (APM)

Phenomenological models:
Advection-dispersion
equation; Time nonlocal or
spatiotemporally
nonlocal models

River continuum model
(i.e., for DOM) [27]; Integrate
reach-scale model; Fractal
topography model;
Pulse-Shunt model [28]

Standard models’ limitation in
modeling pollutant dynamics

They cannot well capture
local-scale super-diffusion
due to turbulence

They cannot capture
non-stationary, scale
dependent anomalous
dispersion at the scale of
101~103 m

They cannot capture mixed
non-stationary anomalous
transport in complex
river networks
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Different models and strategies may be needed to capture pollutant transport at the
three scales. For example, process-based physical models had been developed for the
geomorphologic unit scale transport (such as the classical, well-known advective pumping
model [29,30]), where the detailed sedimentological and geomorphological characteristics
of the stream-aquifer system are represented. These process-based models, however, cannot
be expanded to the reach or watershed scale, since the local-scale heterogeneity cannot be
exhaustively mapped, motivating the development of phenomenological models such as
the FPDE. Although various models differing greatly in the spatial scales they represent
have been proposed (see the extensive review by Boano et al. [2]), no single or unified
framework has been recognized so far for pollutant transport at all scales in streams.

The following transient storage model (TSM), initially built by Bencala and col-
leagues [31,32], had been widely applied to characterize non-reactive, reversible kinetic
sorption of heavy metals to sediments in the transient storage zone:

∂C
∂t

= −V
∂C
∂x

+
∂

∂x

(
D

∂C
∂x

)
+ a (CS − C) (2a)

∂CS
∂t

= −a
A
AS

(CS − C) (2b)

where C and Cs [ML−3] denote the chemical concentration in the main channel and the
storage zone, respectively; a [T−1] is the rate constant for mass exchange between stream
and the storage zone; A and AS [L2] are the stream and storage-zone cross-sectional areas,
respectively; and V and D are the same as those in the FADE (1) (the medium here is the
open channel). The finite-size, single storage zone can be separated into the streambed
and the hyporheic zone by adding one more governing equation in (2). The TSM (2) is
the best-known phenomenological model for the stream-aquifer system. Implementation
software and variants of the TSM (1) include the popular software OTIS/OTEQ [33,34] and
the geochemical submodels MINTEQ and MINEQL [35,36]. If a = 0, then there is no mass
exchange or storage zone, and the TSM (2) reduces to the classical advection-dispersion
equation (ADE) for conservative solutes moving in a homogeneous system.

Our view of watershed hydro-biogeochemical functions can be expressed by three
essential characteristics for pollutant dynamics: (a) multi-scale processes, (b) non-stationary
evolution at the reach and watershed scales, and (c) anomalous dynamics at almost all
spatial scales. None of these real-world processes can be effectively addressed by traditional
models such as the TSM (2) or its variants such as the two-component nutrient spiraling
model (NSM) [37,38] because of the following reasons. First, the TSM (2) and its variants
were built for the reach scale process and, thus, cannot upscale or downscale kinetics for
pollutants moving over a broad spectrum of scales in streams. Second, these models cannot
capture non-stationary kinetics, such as temporal dynamics varying from day to years.
Third, they assume a single mass exchange rate and Fickian diffusion, and therefore cannot
effectively model anomalous transport. Particularly, the single rate coefficient assumed
by these classical models results in the exponential residence time direction (RTD) for
pollutants in the river corridor, eliminating the other types of RTDs such as the (truncated)
power-law distribution recommended by various researchers [39–41]. The exponential RTD
causes the fast decline of the pollutant mass at late times for an instantaneous input, which,
however, cannot explain the slow decline or persistent contamination well-documented in
hydrology [42].

2.2. Development of FADEs for Multi-Scaling Transport in the River Corridor

Faithful modeling of contaminant dynamics affected by hydrologic and biogeochemi-
cal functions in streams is an important goal that has not yet been achieved in sufficient
detail, even after decades of effort. The next-generation physical models, whose rigorous
development can be inspired and improved by the recent advances in FPDEs, are needed
to accurately elucidate hydrologic and biogeochemical processes and quantity multi-scale,
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non-stationary, and anomalous diffusion of pollutants in streams. In this section, we pro-
pose the general FADE for mixed super- and sub-diffusion for reactive pollutants transport
in streams at each scale, while the model itself can be simplified in practical applications
such as non-reactive and sub-diffusive only transport models for sediments moving along
the riverbed (shown in Section 3.1).

2.2.1. Geomorphologic Unit Scale: Fixed-Index FADE for Stable Anomalous Dynamics

Geomorphologic unit scale is practicably applicable for studying hyporheic exchange
since the measurable flow field provides a fixed domain for evaluating pollutant transport
dynamics. Assuming that the probability density function (PDF) of random displace-
ment and waiting times for pollutant particles follow the tempered stable densities, we
propose the fixed-index FADE to model anomalous pollutant transport in rivers at the
geomorphologic unit scale:[

∂

∂t
+ β

∂γ,λt

∂ tγ,λt

]
C(x, t) = −V

∂

∂x
C(x, t) + D

∂α,λx

∂ xα,λx
C(x, t)− Kr C(x, t), (3a)

∂CS(z, x, t)
∂t

= β∗
∂γ,λt C(x, t)

∂ tγ,λt
− K∗r CS(z, x, t), (3b)

where β [Tγ−1] is the capacity coefficient describing the mass ratio between the adsorbed
and mobile pollutants in equilibrium; the symbol ∂γ,λt /∂tγ,λt represents the Caputo type,
tempered, time-fractional derivative ∂γ,λt f (t)/∂tγ,λt = e−λtt ∂γ

[
eλt t f (t)

]
/∂tγ with the

temporal truncation parameter λt [T−1] (whose inverse defines the maximum residence
time) [40]; λx [L−1] is the truncation parameter in space; V and D denote the spatially
averaged velocity and dispersion coefficient, respectively; z stands for the vertical direction
(pointing to the hyporheic zone); and Kr and K∗r [T−1] denote the reaction rate for pollutants
in the open channel and the storage zone, respectively. Equation (3a) shows that the solute
concentration change is due to the advective flux, the super-diffusive flux, and chemical
reactions in the mobile phase, since particles embedded in the immobile phase cannot move.
Equation (3b) implies that the immobile phase concentration is related to the historical
mobile concentration (at the same location) filtered by the memory function, as well as the
mass loss due to reactions.

In the FADE (3a), the space fractional-derivative term captures super-diffusion due to
hydrologic functions (e.g., local-scale stream turbulence or near-bed burst), by substituting
the space fractional derivative for its integer-order analogs in the TSM (2a). The time
fractional-derivative term in (3a) captures sub-diffusion due to biogeochemical functions
(e.g., small-scale transient storage and solute exchange between the mobile and the local-
scale biogeochemically active zones), by substituting the time fractional derivative for its
integer-order analogs in (2a). The tempered stable density captures the exponential density
decline assumed by model (2), the power-law density decline defined by the standard
FADE (1), and any transition between them. Hence, model (3a) improves the TSM (2) by
accounting for super-diffusion and sub-diffusion due to multi-rate mass exchange during
description of complex (and coupled) hydrologic and biogeochemical processes. Because
the tempered stable density in model (3) is infinitely divisible [43], the FADE (3) is valid at
the geomorphologic unit scale.

When α = 2, β = As/A, and the RTD or memory function (i.e., PDF of the random
trapping times for pollutants in the storge zone) changes from the tempered stable density

f (t) =
∫ ∞

t e−λt r γ r−γ−1

Γ(1−γ)
dr to the exponential function f (t) = we−wt (where w = aA/AS),

then there is no multi-rate retention (but a single rate retention) or super-diffusion, and
model (3) reduces to the TSM (2). This can be seen from the generalized mobile-immobile
(MIM) model [11]:

∂C
∂t

+ β
∂C
∂t
∗ f (t) = −v

∂

∂x
C(x, t) + D

∂2

∂x2 C(x, t),
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CS =
∫ t

0
f (t− s)C(x, s)ds,

where the symbol “∗” denotes convolution. When the memory function f (t) =
∫ ∞

t e−λt r

γ r−γ−1

Γ(1−γ)
dr, one obtains ∂C

∂t ∗ f (t) = ∂γ, λt

∂ tγ, λt
C, and the general MIM model shown above

reduces to the fixed-index FADE (3) with α = 2 and zero reaction rates. When f (t) = we−wt

(and α = 2 and β = As/A), the general MIM model reduces to the TSM (2). When
f (t) = ∑N

j=1 wjb
(
wj
)
e−wjt (i.e., multiple rate coefficients wj with arbitrary weights b

(
wj
)

for pollutant mass transfer between the flow zone and various storage agencies), the
general MIM model reduces to the multi-rate mass transfer model interpreted in detail
in [11], implying that the TSM (2) is a single-rare MIM model. From the hydrogeological
point of view, the FADE (3a) defines a specific, multi-rate mass transfer process, where λt
describes the lower limit of the rate coefficients and the tempered stable density describes
the distribution of these mass exchange rates.

2.2.2. Reach Scale: Variable-Index FADE for Evolution of Anomalous Transport in a
Non-Stationary System

Reach scale transport can experience space/time-dependent super-diffusion due to
strong spatiotemporal fluctuations in hydrologic dynamics and system properties, and/or
variable retention/uptake capabilities due to biogeochemical functions changing at a larger
spatiotemporal scale, compared to the geomorphologic unit scale. The fixed indices of
the space/time-fractional derivatives obtained at each geomorphologic unit scale can be
integrated to account for the non-stationary evolution of anomalous transport dynamics,
resulting in a variable-index FADE conditioning of sub-reach properties with spatiotempo-
rally dependent parameters:[

∂

∂t
+ β(x)

∂γ(x,t),λt(x,t)

∂ tγ(x,t),λt(x,t)

]
C = − ∂

∂x
[V(x, t)C] +

∂

∂x

[
D(x, t)

∂α(x,t)−1,λx(x,t)

∂ xα(x,t)−1,λx(x,t)
C

]
− g(t)Kr ∗ C (4a)

∂CS(x, t)
∂t

= β∗(x, t)
∂γ(x,t),λt(x,t) C
∂tγ(x,t),λt(x,t)

− gS(t)K∗r ∗ CS. (4b)

where g(t) is a general memory function, the symbol “∗” denotes convolution, the indexes
γ and α are functions of space and time, and the variable-order temporally tempered
fractional derivative is defined by Sun et al. [44]:

∂γ(x,t), λt(x,t)

∂ tγ(x,t), λt(x,t)
f (t) =

e−λt(x,t) t

Γ[1− γ(x, t)]

∫ t

0
eλt(x,s) s(t− s)−γ(x,s) ∂ f (s)

∂s
ds.

The variable-index FADE (4) is selected since non-stationarity is the main factor that
should be accounted for when upscaling from local to field scales, where most environ-
mental issues are identified/concerned.

2.2.3. Watershed Scale: Distributed-Order FADE for Combing Anomalous Transport in
Sub-Basins

River network scale processes exhibit specific characteristics including non-stationary
evolution of pollutant transport (driven by long-term and large-spatial variation of bio-
geochemical functions, non-stationary evolution of the fluvial system, sub-basins with
different hydrologic properties, and/or long-term and large scale land-use/land-cover
change) and/or strong variation of transport strengths (due to changes in long-term, large
scale hydrologic conditions such as long-term climate shift including wet/dry season
cycles). These characteristics can be sensitive to sub-basins and should be aggregated to
define the response of the whole watershed to contamination, motivating us to combine
the variable-order FADE (4) using the distributed-order fractional derivative:
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∂C
∂t

+
N

∑
i=1

(
βi

∂γi(x,t),λt,i(x,t)

∂ tγi(x,t),λt,i(x,t)

)
C =− ∂

∂x
[V(x, t)C] +

N

∑
i=1

{
∂

∂x

[
D(x, t)

∂αi(x,t)−1,λx,i(x,t)

∂ xαi(x,t)−1,λx,i(x,t)
C

]}
− g(x, t)Kr ∗ C (5a)

∂CS,i(z, x, t)
∂t

= β∗i
∂γi ,λt,i C
∂tγi ,λt,i

− gSi (x, t)K∗r ∗ CS,i, i = 1, · · ·N (5b)

where i denotes the i-th sub-basin or sub-watershed, and N is the total number of sub-basins
in the drainage system (which can be delineated using StreamStats, the United States (U.S.)
Geological Survey streamflow statistics and spatial analysis tool).

Model (5) extends the mobile-mobile FADE proposed recently by Yin et al. [45] for
modeling multiple-peak anomalous transport observed in alluvial aquifers. The aggre-
gation used in the variable-index FADE (5) can convey the lower-scale information in
anomalous transport, where the sub-basins act as parallel components contributing simul-
taneously to the river network.

3. Applications

The hierarchical framework of FADEs proposed above are applied to fit the observed
anomalous transport in rivers at various scales.

3.1. Application 1: Bedload Transport along Riverbed

We first apply the fixed-index FADE (3) to fit bedload transport at the geomorphologic
unit scale (i.e., the flume scale) documented in Martin et al. [46]. Four snapshots (the
“snapshot” represents the spatial distribution of particle density at a given time) were
sampled for uniform tracer practices moving along a 2-m-long fixed gravel bed (shown by
symbols in Figure 1). Since (a) the tracer particles represent conservative pollutants (i.e.,
without reactions), (b) the host medium does not have the hyporheic zone, and (c) no fast
jumps were observed for the tracer particles during the whole experimental period (<4.0 s)
(i.e., sub-diffusion only), the fixed-index general FADE (3) can be simplified as:[

∂

∂t
+ β

∂γ,λt

∂ tγ,λt

]
C(x, t) = −V

∂

∂x
C(x, t) + D

∂2

∂ x2 C(x, t). (6)
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Figure 1. Application 1: (a) The measured (symbols, from Martin et al. [46]) versus the best-fit snapshots for bedload
moving along a fixed gravel bed. (b) is the log-log plot of (a) to show the tail.

The best-fit result using the FADE (6) is depicted in Figure 1. The mean flow velocity
V (=0.51 m/s) was close to the velocity (0.48 m/s) measured by Martin et al. [46]. To
quantify the uncertainty of the fitting parameters (including γ, β, and D), we used the
90% confidence interval with the error margin X = 1.645σ/

√
n, where n is the number

of samples and σ is the standard deviation of the sampling data. Sensitivity analysis
provided the following parameter values: γ = 0.30(±0.021), β = 0.1(±0.0119) sγ−1, and
D = 0.00421(±0.0003) m2/s, where the symbol “±” denotes the 90% confidence interval.
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We then apply the variable-order FADE (4) to fit bedload transport along a riverbed
at the reach scale. Sayre and Hubbell [47] released 40 pounds of tracer sand (with a
median grain size of 0.305 mm) across the bed of the North Loup River, Nebraska, U.S.
Ten snapshots were sampled along 1800 feet of channel, as shown by symbols in Figure 2.
The tracer sand experienced alternative motion and resting whose statistics can change
with space due to the non-stationary evolution of hydrologic and geomorphic processes
(including turbulent flow-boundary interactions and variability in migration dunes and
scour) along the reach-scale riverbed with fractal bedforms. This intermittent transport
dynamic can be captured by the Mobil-Immobile model with a space-dependent index,
which is a simplified version of the variable-index FADE (4):[

∂

∂t
+ β(x)

∂γ(x),λt(x)

∂ tγ(x),λt(x)

]
C = − ∂

∂x
[V(x, t)C] +

∂

∂x

[
D(x, t)

∂α(x)−1,λx(x)

∂ xα(x)−1,λx(x)
C

]
(6a)

∂CS(x)
∂t

= β∗(x)
∂γ(x),λt(x) C
∂tγ(x),λt(x)

(6b)
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versus measured (circles, by Sayre and Hubbell [47]) snapshots of bed sediment at the North Loup River, Nebraska at ten
sampling cycles (a–j). For comparison purposes, the results of the FADE (4) with a fixed index (dotted lines) and the original
mode (without considering anomalous diffusion) from Sayre and Hubbell [47] (dashed lines) are also shown.
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The model fitting results are shown in Figure 2. The best-fit parameters are: V = 7.75 ft/h
(close to the field measurement), α(x) = 1.34(±0.012) − 0.00012(±0.00001) x/L0 (where
L0 = 1 [L−1] is used for unit conversion), D(x) = 4.1(±0.022) + 0.0064(±0.0002) x/L0 ftα/h,
γ = 0.80(±0.017), and β = 0.30(±0.0149) hγ−1.

3.2. Application 2: Heavy Metal Moving in a Stream Varying from Geomorphologic Unit Scale to
Watershed Scale

Breakthrough curves (BTCs, representing the time evolution of flux concentration
across the control plane) of manganese (Mn) due to mining contamination at the hy-
porheic flow path scale (0.30 m in length), the reach scale (100~3000 m), and the basin scale
(~20,000 m) at Pinal Creek, a perennial river located in the central highlands of Arizona,
were measured by Fuller and Harvey [48] (Figure 3a), providing a complete dataset to
test the scale effect of anomalous transport. The BTC at the basin scale contains historical
data over a period of 15 years (1980~1996) since the Mn concentration began to increase
(Figure 3d). The gravel/sand streambed is connected with the underlying alluvial aquifer.
Mn moving along the river corridor experiences hydrological and geochemical functions.
The TSM (2) captures well the reach-scale BTC, but it misses the nuance of BTCs at the geo-
morphic unit and watershed scales. A detailed description of heavy metal contamination,
the study site, and the application of FADEs can be found in our recent work [1].
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Applications show that the following FADE, which is the fundamental fractional
advection-dispersion-reaction equation underlying the general expressions (3–5), can fit
the observed BTCs at all scales (with the best-fit parameters changing with scales) (see
also [1]): [

∂

∂t
+ β

∂γ

∂ tγ

]
C = −V

∂C
∂x

+ D
∂αC
∂ xα

(7a)

∂CS
∂t

= β∗
∂γ C
∂tγ
− K Cs, (7b)

where the reaction term is needed to account for manganese oxidation in the hyporheic
zone. Model fitting results are shown in Figure 3 and will be further discussed below.

4. Discussion
4.1. FADE Applicability in Capturing Anoamlous Scaling in Rivers

Application 1 shown in Section 3.1 identified numerically anomalous scaling for
bed sediment transport in rivers at local to regional scales, proving the applicability
of the single-index FADE (3) at the geomorphologic unit scale and the variable-index
FADE (4) at the reach scale. Application 2 in Section 3.2, however, showed that the
FADE (7) alone could fit the observed transport for the heavy metal at all three scales. The
discrepancy in the model applicability may be due to two reasons. First, bed sediment
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(which move along the riverbed via saltation, sliding, or rolling and may be affected by
the riverbed topography, stream morphology, turbulent boundary layers, shear stress,
scour, and entrapment) can be more sensitive to the non-stationary evolution of stream’s
hydrologic/geometric properties than the dissolved Mn moving in the open channel.
Second, the two applications used different datasets (because different sites used different
sampling strategies/tools): Application 1 used the snapshots which covered a full range
of the reach, while Application 2 used the BTCs which represent the pollutant flux at a
single cross plane. In other words, the trace snapshot provides the instant signal from each
sub-region of the riverbed, while the BTC only samples the output signal from the reach
(analogous to the output of a black box without information of the detailed, intermediate
steps). The BTC calculated by the summation of multiple stochastic processes with different
tempered stable densities (i.e., model (4)) may be re-produced by a single stochastic process
with the equivalent tempered stable density (i.e., model (7)). Therefore, a variable-index
model such as (4) is needed to capture the space-sensitive, non-stationary distribution of
snapshots, while the standard FADE with a scale-dependent index can fit the BTCs at the
outlet at different scales (according to the generalized central limit theory).

Although the BTC cannot provide detailed spatial information as much as the snap-
shot, one may still decipher the variation of anomalous transport with scales by analyzing
the scale-dependent model parameters when fitting the BTC. This is necessary since in most
hydrologic and hydrogeological observations, the BTC is much more common than the
snapshot (because the former may require only one sensor). Application 2′s fitting parame-
ters for BTCs do change with scales, which may imply the scaling process. For example,
for modeling the Mn BTC at the geomorphologic unit scale at Pinal Creek, the best-fit
time index γ (=0.99(±0.0001)) is close to 1 and the best-fit space index α is 1.70(±0.011).
This might be because at a short travel distance, the Mn particles did not have significant
chances to be trapped for a long time before carried/driven by local turbulent flow. At
the reach scale, the time index γ = 0.70(±0.013) and the space index α = 2.00 (fixed at 2)
after fitting the BTC; this might be because Mn began to sample more trapping events,
and the intermittent turbulence could not cover the whole reach. At the watershed scale,
γ is 1.00 (fixed at 1) and α is 1.90(±0.002), by fitting the corresponding BTC, because
the temporal tempering (i.e., the exponential truncation of the standard α-stable density)
produced asymptotic Fickian scaling in time (i.e., sub-diffusion was weakened eventually
due to the truncated waiting time PDF), and large floods in the 15 year period generated
and accumulated enough fast movement of Mn which cannot be captured by the classical
TSM (2), assuming Fickian dispersion. Hence, anomalous transport of Mn in rivers deci-
phered by fitting the BTCs may be scale dependent, although a single-index model such as
the FADE (7) (with a scale-dependent index) can fit all BTCs. This hypothesis, however,
requires further validation in the future when abundant field observations are available.

It is also noteworthy that dynamics of anomalous transport may change in time even
for the same spatial scale, especially at late times. This was found by our recent work in
evaluating the long-term, transient flow dynamics in saturated porous media [49]. At late
times, when slow diffusion dominates transient flow, the low-permeability deposits (i.e.,
clay/silt) began to dominate groundwater head change, whose dynamics can be captured
by the fractional-derivative model with a time-variable index similar to the variable-index
FADE (4a). The BTCs observed in Application 2 (Figure 3), if they last long enough,
may exhibit different scaling behaviors in time because the strong trapping zones would
dominate slow diffusion of pollutants at late times. Such a time-scaling behavior may not
be identified by a typical snapshot since field monitoring usually cannot last for decades
and therefore tends to miss the time-dependent anomalous scaling.

4.2. Fractional Index within a Single Scale: When Will it Reach Stable?

The FADE (7a) (or (3a)) is a macroscopic equation or the scaling limit describing
ensemble motion of particles undergoing microscopic random walks with (tempered)
power-law jumps and waiting times. The above-mentioned results show that the index
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of the fractional derivative in the FADEs changes with scales. The hidden assumption
is that, for a single scale, the FADE’s index should converge to a stable value. The same
assumption was used by almost all FPDEs with a single index, but it has never been
checked. Here we check whether this index can reach a stable value by applying the
Monte Carlo approach to simulate anomalous transport at various travel distances in a
10-m-long fractured aquifer (Figure 4). The fracture-matrix system (with a length of 10 m),
which was generated by COMSOL Multiphysics, contains two smooth, parallel fracture
walls with a small, constant aperture of d = 0.0005 m and impermeable matrixes with
the width of b = 3 m. A conservative tracer with the concentration of 1 M is injected
continuously at the upper boundary for 2 days, and the total modeling time is 10 days.
Tracer transport in the fracture is dominated by advection and dispersion longitudinally
(i.e., the x axis). The PDE governing the local-scale transport process in the Monte Carlo
simulation follows the traditional ADE, with the initial condition C(x, 0) = 0 and boundary
conditions C(x = 0, t) = 1 for t ≤ 2, C(x = 0, t) = 0 for t > 2, and ∂C(x = 10, t)/∂t = 0.
The tracer BTCs (shown by symbols in Figure 5) were collected at 10 locations, representing
the travel distance of 0.02, 0.04, 0.08, 0.1, 0.4, 0.8, 1, 4, 8, and 10 m (varying by 3 orders of
magnitude), respectively.
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Figure 4. Finite elements for a laboratory-scale fractured medium, which has a dimension of 10 × 3 m
(length × width).

The single-index FADE (7a) fits all the “measured” BTCs well (Figure 5), with the
best-fit parameters listed in Table 2. The resultant mean velocity remains stable due to
the steady-state flow condition, and the dispersion coefficient D increases with the travel
distance, implying that the tracer particles experience more local fluctuations in velocity
when moving further downgradient. The space index α = 2 since there are no apparent fast
jumps along this single fracture. The best-fit time index γ slowly approaches the asymptote
(=0.93) (Table 2 and Figure 6). Before stabilizing at the distance of x≥ 8 m, the tracer particles
move with a relatively constant index γ within the local scale (x≤ 1 m). This local scale (1 m)
is approximately the hydraulic radius of a single matrix element surrounding the fracture,
and hence the tracer particles are moving in a local system with much less variability in
the internal structure than those beyond the local scale. Therefore, anomalous transport for
pollutants moving inside of a bedform in the riverbed (10−1~100 m), a single hydrofacies
in aquifers (10−1~102 m), or the same type of soil in the vadose zone (10−1~101 m) may be
captured by the FADE (7) with a stable index. This conclusion explains why the single-index
FADE (7a) fits contaminant transport at the well-known MADE aquifer, Mississippi, U.S.
(adjacent to fluvial-deltaic deposits of the Gulf of Mexico Basin) and the Cape Cod aquifer,
Massachusetts, U.S. (consisting of glacio-fluvial outwash sediments) well [11]. The observed
tracer plumes (at the MADE and Cape Cod sites) extended 100~200 m downgradient, which
was on the scale of interconnected coarse sand/gravel hydrofacies, and therefore, according
to the above-mentioned conclusion, anomalous transport at these two fluvial aquifers can be
characterized by the FADE (7a) with a stable index, proving the finding in Zhang et al. [11].
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Figure 5. Fracture: The best-fit (lines, using the FADE (7)) versus the Monte Carlo BTCs (symbols) of
dissolved pollutants moving at different travel distances along the saturated fracture-matrix medium
plotted in Figure 4.

Table 2. The best-fit parameters in the FADE (7a) for the snapshots shown in Figure 5. In the legend,
“RMSE” denotes the root mean square error which evaluates the fitting.

Travel Distance (m) V (m/d) D (m2/d) γ [–] RMSE

0.02 1.035 0.005 0.83 0.0212
0.04 1.035 0.005 0.83 0.0234
0.08 1.035 0.005 0.83 0.0215
0.10 1.035 0.005 0.83 0.0243
0.40 1.035 0.050 0.84 0.0251
0.80 1.035 0.120 0.84 0.0231
1.00 1.035 0.120 0.84 0.0221
4.00 1.035 0.250 0.91 0.0243
8.00 1.035 0.250 0.93 0.0254

10.00 1.035 0.250 0.93 0.0206

Beyond this scale, the fractional index in the FADE tends to apparently fluctuate
(Figure 6b), resulting in the variable-index FADE (4) for reach-scale anomalous transport.
It is therefore our logic expectation that anomalous transport at the MADE and Cape
Cod aquifers would exhibit quite different scaling behaviors when entering the other
hydrofacies downgradient. This can cause high uncertainty in predicting the FADE index
for anomalous transport in reach-scale rivers or regional-scale aquifers (>200 m), a scale
involving many environmental concerns and water resources cleanup efforts. The FADE
model predictability at the reach/regional scale remains an open research question. It is
also noteworthy that further studies are needed to explore a general theory of stability of the
hierarchical FADEs which can be applied to anomalous transport in other complex systems.
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5. Conclusions

This study proposed and partially validated the hierarchical fractional-derivative
models in simulating anomalous scaling for pollutants transport in the river corridor at all
important spatial scales. Three conclusions were drawn. First, the fixed-index FADE (3)
captured anomalous transport of bed sediment and the dissolved heavy metal moving in a
bedform (i.e., at the geomorphologic unit scale) well, while the variable-index FADE (4)
was needed to capture the nuance of bedload snapshots with spatially varying spreading
rates along the reach scale riverbed. When the tracer BTC was used, a single index FADE
can efficiently upscale anomalous transport without mapping the sub-grid, intermediate,
multi-index steps occurring from the source to the reception location, if a scale-dependent
index is used in this single-index FADE. Validation of the full capability of the proposed
hierarchical FADEs, including the potential temporal scaling of anomalous transport and
the distributed-order FADE proposed for capturing watershed-scale snapshots, however,
requires further field observations which may be available in the future. Second, pollutant
transport in complex geomedia may exhibit anomalous scaling in space, time, or both,
and the model selection (including the type and index of the FADE) depends on the scale
and type of the geologic system (rivers, aquifers, or soil), as well as the target dataset
(snapshot versus BTC). Third, the index of the FADE remains stable at the unit-medium
scale, such as the bedform, hydrofacies, and uniform soil, which have different sizes, and
then fluctuates beyond this fundamental spatial scale. Therefore, studies of reach-scale
anomalous transport (which links the geomorphologic unit scale and the watershed scale)
are the core for reliable applications of fractional calculus and FADEs.
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